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A method that enabl~ control laws for non-linear stochastic objects to be synthesized exactly is considered. "I'ne control is optimal 
in the sense of probabiListic criteria of a general form. The advantages of the method over the traditional methods are d e m o m ~ t e d  
and an example of its practical application is considered. Copyright O 1996 Elsevier Science Ltd. 

Available methods for synthesizing stochastic controls that optimize the mathematical expectation of 
some given functional [1, 2] preclude the use of more general functionals as optimizing probabilistic 
criteria, namely, :Functionals that depend non-linearly on the probability density of the parameters of 
the state of the c,bject, such as the minimum of the entropy of the state vector, Kullback's criterion, 
and so on. 

In this connection the problem arises of developing an approach to the synthesis of optimal controls 
for stochastic objects, which would enable an exact control law to be constructed for the most general 
optimization criterion, depending non-linearly on the probability density of the state vector. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Suppose that a stochastic object is described by a non-linear vector differential equation of dimension 
N in symmetrized form 

X = f(X, t) + fo (X, t)V, + U(X, t) (1.1) 

where f = (fl, f: . . . . . .  fly), f0 = II f0a II are known non-linear vector and matrix functions, Vt is white 
Gaussian norma'.,ized vector-noise of dimension N1 and U = (U1 . . . . .  UN) is the required control vector. 

It is required to determine the control vector U(X, t), defined in the time interval T = [to, tk], that 
will minimize a probabilistic functional J defined over a bounded set X. e [Xmin, Xmar.] and which 
depends non-linearly both on the control U(X, t) and on the probability density p(X, t) of the process 
Xt 

J = I ~ O[p(X,t),U(X,t)l dXdt = I Wdt (1.2) 
T X. T 

where @ is a known non-linear function, representing, in the general case, possible analytic constraints 
on the control vector. 

Since the den,;ity p(X, t) of the process X, which occurs in the functional (1.2) and is subject to control, 
is described by the Fokker-Planck-Kolmogorov equation 

~p(X,t) 
at = L{a,b,p(X,t)} 

(1.3) 
a = ( a t , a  2 ..... aN), b=llb011, i , j = l , 2  ..... N 

LI,,b,p X,O  ta, tX, t)ptX, t)l+LX • OX i 2 i  ~ ~ {bo(x't)p(x't)} 
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= f/(X, t) + Ui(X,t)  + l~4k j  ~ ' f %  ( X ' t ) ~ x  i foa (X,t) = ai(X,t)  

1 
= u i (X , t )+  ali(X,t) ,  bil(X,t)  = ~ f o a  (X,t) f% (X,t) 

which is a partial differential equation, it follows that the solution of our problem will necessitate using 
methods of optimal control theory for systems with distributed parameters. Throughout this paper 
summation over i, j goes from 1 to N, and over k, from 1 to N~. 

2. S Y N T H E S I S  O F  T H E  O P T I M A L  C O N T R O L  

We shall assume that the optimal control is a member of the class of bounded continuous functions 
with values in an open domain U.. To construct the control we will use dynamic programming, according 
to which the problem reduces to solving the functional equation [3] 

min~dV + W} =0 (2.1) 
UeU.L dt 

subject to the terminal condition V(tk) = 0, where Vis an optimal functional that depends parametrically 
on the time t ~ T and is defined on the set of functions p that satisfy Eq. (1.3). 

For linear systems, the functional is sought as an integral quadratic form [3] 

V = S v (X,t)p2(X,t)dX 
x 

whence we obtain 

m . ~ . n , =  j - - p  
at x ~ at • L Ox, Oxi )J 

a I = (all ,al2,. . . ,alN) 

(2.2) 

Analysis of this expression shows that the determination of the vector U(X, t) in a solution of the 
functional equation (2.1) reduces to a classical problem: to find a vector function that minimizes the 
definite integral (2.2). Moreover, the vector function U(X, t) solving this problem must satisfy the system 
of Euler equations 

-.~ .[2vp ] -_-- - - - ,zolJ- -=0,  i = ! , 2  ..... N 
OX i du i ~X i 

o r  

~t~) r 0 r 
(2.3) 

In the general case, Eq. (2.3) is a system of non-linear equations in the components of the control 
vector, and it can be solved only in certain special eases, e.g. when the function q~[p, U] has the 
form 

~PfOo[p]+ ~.~i(ui) 
i 

where yy are analytic functions with invertible first derivatives, or 

0- -  Oo[p]+[U(X.t)- Uo(X,t)] r Du(X,t)[U(X.t)- Uo(X,t)] 
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where D~X,  t) is a known symmetric square matrix and U0(X, t) is a known vector. 
In the latter case the assumption that the function is a quadratic form in the vector U is dictated, as 

a rule, by the need to minimize the deviation of a form involving the unknown control from the given 
vector U0, and this in turn depends on the possibility of the technical implementation of the control. 
Equation (2.3) can be solved for U as follows: 

T 

(2.4) 

Substitution of lifts optimal control law into (1.3) and (2.2) (assuming that the condition dV/dt + 
W = 0 holds for the optimal control Uopt [3]) yields a system of partial differential equations 

3p 
~----~- = :{a~, b,p} - A(p,u ), p(X,t o) = Po 

r 
A(p.v ) = pDv I 3---~-(2up) p 

~v =-2up-IL{a~.b.pl-~o[plp-2- (2up) D~ I (2up) +2up-IA(p.u) 
Ot 

o ( X . t k ) = 0  

(2.5) 

The subscript i is introduced to denote the ith vector component. 
In principle, the solution of this system exhausts the solution of our problem. 

3. ANALYSIS OF M E T H O D S  FOR THE C O M P U T A T I O N A L  
I M P L E M E N T A T I O N  OF THE OPTIMAL C O N T R O L  

From the standpoint of the accuracy and complexity with which the optimal control is constructed, 
a comparative an~dysis of the solution of system (2.5) and the system of adjoint equations obtained using 
the traditional approach [1, 2] may be of interest. While the optimal control in the case of (2.5) depends 
on p through a proportional-differential relationship, the control produced by the traditional method 
depends on p through integration, which implies, given an N-dimensional state vector, the need for 
simultaneous integration of the (2N + 1)-dimensional system of adjoint ordinary integro-differential 
equations and a partial integro-differential equation for the N-dimensional function p. This is far more 
complicated than solving a system of partial differential equations like (2.5). Nevertheless, the difficulties 
involved in solvivg system (2.5), for which there are at present no general methods for exact analytic 
solution, are not lessened. There are a great many approximate methods for solving the problem, 
all guided by some compromise between the necessary accuracy and the available computational 
resources; we shall not dwell on them here. Rather, we shall focus on one possible solution method, 
based on expanding the functions ~J and p in series in some system of orthonorrnal functions of a vector 
argument 

u (X, t )  = y o t .  (t)~0.(X) = ~,ra 

p(X,t) = ~15, (t)9,(X) = ~0rl~ 
~t 

where ~t takes a set of values from (0 . . . .  ,0) to (N2, • • •, N2) [3], tp is a vector of orthonormal functions 
of X, and ot and 13 are the coefficient vectors of the expansions. 

In that case, t'ae solution reduces to solving the two-point boundary-value problems of integrating 
the following system of ordinary differential equations 

13 = J ~L[a~. b. erl3laX- f ~,A(,pZl3. ~,ra)a'X 
X X 
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or= J +{-2+ra(+r fJ ) -~  L[al ,b ,q~rpl -Oo[+rl3l (+rfJ)  -2 - 
X 

(3.1) 

subject to the boundary conditions ot(tk) = 0, 13(t0) = 13o, where the values of the components I!o are 
determined by expanding the function p(X, to) = P0. 

From the standpoint of practical implementation, it turns out to be easier to integrate system (3.1) 
with its boundary conditions than to integrate (2.5), but as far as real-time organization of the estimation 
process is concerned, the problem remains no less difficult. Moreover, the desirability of such a direct 
approach is questionable, for the following reasons. First, the necessary time and computational resources 
turn out to be large; second, there is no possibility of adjusting the vector U in real time, and, third, in 
the process of instrumental realization it is generally not possible to store the given values of U with 
sufficient accuracy. 

Thus, in this ease we are quite justified in solving problem (3.1) by means of approximate methods, 
and one of these is the invariant embedding method [4], which yields the desired approximate solution 
in real time. 

The use of this method presupposes that all the components of the unknown vector are given in 
differential form. Therefore, to permit real-time synthesis of the vector U by this method, we introduce 
a fictitious variable O, which will enable us in what follows to incorporate (2.4) as a differential equation 

O = U~(~,T~, ~,TB) 

considered together with Eqs (3.1) as a single system. The use of the invariant embedding method in 
this ease yields the following system of equations 

6 I Uo 
~" X X 

o =  2f+ILB(, , ,+,+'b,  u 0 ) d x o +  - '  B<,,, b, +T+,u0>l:x + 
x tap x 

x tot; J 
B(al,b,,or~,uo)= ? [.o,,,,0 

Since the matrix D in the invariant embedding method plays the role of a weight matrix relative to 
the deviation from optimum of the approximate solution vector, the components corresponding to the 
variables l]i in D characterize the degree of deviation from the expansion coefficients of the true density 
(the components of D, accordingly, are the deviations of the parameters at the starting time). A 
considerable merit of this approach, irrespective of the formation of the approximate solution, is the 
possibility of a real-time synthesis of an optimal control Uopt. 

4. EXAMPLE 

The effective use of the proposed approach may be illustrated by the following example. 
A controlled system is described by an equation 

x'=-ax3+u+V, X(to) = 0 
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where V(t) is centred white Gaussian noise of intensity Dr. 
The control u will be synthesized subject to the condition that the deviation of the coordinate x from its initial 

state x(to) over an interval [to, tk] must be a minimum and that the control must be produced at minimum cost. 
The traditional approach enables us to solve the problem on the basis of the root-mean-square criterion [2] 

Jl = M { !  [x2(~)+/(2u2(~)]d'c}, K=const 

while the criterion underlying the approach proposed here is the maximum probability of the existence of x in a 
given neighbourhoodx, = [Xmin, Xm~ ofxo (by Chebyshev's inequality, this potentially yields high accuracy in the 
control of x), i.e. the tainimization of the criterion 

J2 = ~ tl [-P(x,'O+ K2u2(x,~)]dTzlx 
x ,  t 0 

In the first case, the optimal control is defined as [2] 

Uo~ = 2~K M[k]= 2~K _ ! ~ kO(x,~.,'t)d'Ldx 

where X is the adjo:int variable and the system of canonical adjoint equations, derived from the stochastic 
Hamiltonian, is 

x = - a x  3 +uop t + V t, X(to)= x o 

• k" = 3akx 2 + 2x, k(tl~ ) = 0 

so that one can write: down the following equation for the density p = p(x, g, t) 

~ p  
a'-t'-- ~ ~_~ :. p + + 2x)p] + ~2 0x 2 (4.1) 

C.onsequenfly, exact solutions of the problem reduces in tkis case to sohdng a tw~nsional integro-differential 
equation (4.1), but with indeterminate boundary conditions (as the variables x and k are undetermined at times 
to and tk). Because of this last detail it is in principle impossible, using the traditional approach, to synthesize an 
exact s t a ~  optimal control (unlike the approach in this paper). The classical way to eliminate this contradiction 
is Gaussian approx~,~ation of the density p(x, g, t), which in this case leads to the adjoint system for estimates of 
the means 

,r" = -a.~3 + 2-~ ~.. ,~(to)fM(xo)=O 

~' = 3af~.t 2 + 2~, ~(t t ) = 0 

(4.2) 

Integration of system (4.2) is equivalent to solving a two-point boundary-value problem, so that in order to 
construct the control in real time one must use invariant embedding, which yields equations for the approximate 
estimate ~. 

2 I 
i .  e -a / .3  +2D~., D = 4D2 -9aD.~. - 2-~K 

from which one can determine the approximate control law 

~opt = 2.~.D 

The alternative approach proposed here, in turn, enables one to construct an approximate control law as the 
right-hand side of the equation in the variable O, which makes up a single system together with the equations in 
the approximate coefficients I~ of the expansion of the density p(x, t) in the orthonormal system of functions ~O 

'IL, 0 I 
X o 
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D = 2 ~otB 1 (~o,x) + 3x2a~or }dxD + 2D f~0{~o r (Bt (~,x)~(~Tfi) -] + 3ax 2 )}dr + 
Jr. x. 

X x, LOXk x, 

2 T T 
- - .  . _  D v  ~ *P . 3 ~ 
~ ' ~ - T ~  ÷= a~ 

For a comparative evaluation of the accuracy of both approaches, a numerical simulation was carried out of a 
suboptimal control (obtained by the invariant embedding method) for the above object with 

a = K =  1 ; D r =  1.7;x0 = O,x. = [-2.3,2.3]; T =  [0, 100Is 

~, = (cos (c0or), sin (coal cos ( 2 ~ ) ,  sin (2o~)),  ~ =  =r2.3 

the control being implemented for 30 stochastic trajectories of the object. 
The equations were integrated by a third-order Runge-Kutta procedure with step size 0.03 s. The accuracy of 

the control was estimated by averaging over the ensemble of realizations of  the mean-modulus deviations of the 
trajectories, taken separately, from the boundaries of the intervalx, in time T. By the end of the simulation it was 
established that the accuracy of the control based on the approach proposed here exceeds that of the traditional 
approach by a factor of more than two, which in turn implies that the method can be used to good effect to synthesize 
controls for practical stochastic systems. 
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